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Abstract In this article, we briefly review some of the most
important open problems in computer virology, in three differ-
ent areas: theoretical computer virology, virus propagation
modeling and antiviral techniques. For each area, we briefly
describe the open problems, we review the state of the art,
and propose promising research directions.

1 Introduction

Research in computer virology is still somehow controver-
sial. A widely spread misconception believes that researching
on computer virus propagation is neither interesting, nor pro-
ductive: it is potentially dangerous, since it can lead to the
development of more devastating techniques of viral infec-
tion, and in any case it is just a waste of time, because the job
of fighting computer viruses is limited to the “catch, analyze,
deploy signatures” cycle typical of the anti-virus industry.

This widespread belief explains why there are just a few
research teams in universities and research organizations
worldwide that deal with computer virology. An insufficient
dissemination and knowledge of the few remarkable theoreti-
cal results that have been obtained until now in this field partly
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accounts for this belief. Upon closer examination, these
results demonstrate that, on the contrary, a deep research in
computer virology is absolutely urgent and essential.

In order to maintain a relatively efficient protection of our
systems, in order to try and anticipate computer viral hazards
before they actually materialize in the hands of attackers and
malware writers, we need to understand in depth the threat
we are facing, and how it is evolving. We cannot rely on a
“wait and see” approach, but we must anticipate technologi-
cal evolutions.

Unfortunately, many open problems still exist as far as
computer virology is concerned, in both theoretical and tech-
nical aspects. Many other problems will doubtlessly emerge
in the future, due to the ingenuity of malware writers. In the
meantime, computer systems become more and more com-
plex, more and more sensitive, making old virus protection
and defense models progressively inadequate.

The purpose of this paper is to present what we believe
to be the most interesting open problems in computer virol-
ogy. We selected the problems whose resolution, or in-depth
study, is likely to generate a valuable contribution to the level
of the field, and also to improve the quality of detection and
protection applications. Also, we tried to focus on theoretical
problems in computer virology, which can motivate scholars
in theoretical computer science or in mathematics to research
in this field. Computer virology is not just an endless hunt
between virus coders and antivirus labs, but offers a lot of
theoretically deep problems to fathom.

We focused on four major aspects, which correspond to
the general organization of the paper. Section 2 deals with
open problems in theoretical computer virology. Founding
fathers of this field, like Fred Cohen or Leonard Adleman,
have produced essential theoretical results, thus giving birth
to computer virology as we know it. But their seminal works
have opened up other interesting problems that are still to
be solved. Another aspect comes from the fact that the the-
oretical models they proposed tend to become unsuitable to
describe some new viral risks. Many complexity issues still
require researchers’ attention. Classification aspects are worth
considering in order to help to clearly identify the true and
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complete nature of what the computer viral hazard is and how
it may evolve in the future.

Section 3 considers open problems in virus propagation
modeling techniques. We review the mainstream literature
works on this topic, and show why new modeling techniques
are needed to capture new trends in the propagation of com-
mon viruses, mass-mailers, random scanning worms of new
conception, and we also briefly deal with various basic issues
surrounding propagation modeling.

Section 4 deals with proposed countermeasures: how can
they be validated before being implemented? Which new
defensive techniques do we need to counter new develop-
ments we foresee in the next generations of aggressive mal-
ware?

Section 5 presents instead some practical and technical
research areas that could benefit from a theoretically sound
scientifical approach which is currently lacking.

Finally, in section 6 we draw conclusive remarks on this
review, and outline the most interesting issues for future re-
search in the area.

2 Open problems in theoretical computer virology

2.1 Theoretical definitions of viruses

Let us recall the different theoretical definitions for computer
viruses that have been proposed in previous research. It will
help the reader to better understand what follows.

– Cohen’s definition considers Turing machines [1]. The
basic notion is that of viral set.

Definition 1 (Viral set) For all Turing machines M and all
non-empty sets of Turing programs V , the pair (M, V ) is a
viral set, if and only if, for each virus v ∈ V , for all histories
of the machine M, we have:

– For all time instants t ∈ N and cells j of M if
1. the tape head is in front of cell j at time instant t and
2. M is in its initial state at time instant t and
3. the tape cells starting at index j holds the virus v,

then, there exists a virus v′ ∈ V , at time instant t ′ > t
and at index j ′ such that

1. index j ′ is far enough from v position (start location
j),

2. the tape cells starting at index j ′ hold the virus v′ and
3. at some time instant t ′′ such that t < t ′′ < t ′, v′ is

written by M.

In an abridged way, we can write that V is a viral set with
respect to M, if and only if,

[(M, V ) ∈ V]
and that v is a virus with respect to M, if and only if,

[v ∈ V ] such that [(M, V ) ∈ V].

In this context, a “simple” virus can be described by a sin-
gleton viral set.

– Adleman’s definition as well as Zuo and Zhou’s one relies
on recursive functions [2,3] (we consider here the formal-
ism adopted in [4] for the purpose of homogeneity with
the next definition).

Definition 2 (Adleman’s viruses) A total computable
function A is said to be an A-viral function (virus in the
sense of Adleman) if for each system environment (r, d),
one of the three following properties holds:
Injure

∀p, b ∈ D ϕA(p)(r, d) = ϕA(q)(r, d). (1)
This item corresponds to the execution of some viral
functions independently from the infected program.

Infect
∀p ∈ D ϕA(p)(r, d) = 〈εA(r ′

1), . . . , εA(r ′
n), d ′〉 (2)

where ϕp(r, d) = 〈r ′, d ′〉 and εA is a computable
selection function defined by

εA(p) =
{

p or
A(p)

The second item corresponds to the case of infection
(any program is potentially rewritten according to A;
data are left unchanged).

Imitate
∀p ∈ D ϕA(p)(r, d) = ϕp(r, d). (3)
The last item corresponds to mimic the original pro-
gram (stealth purpose).

where D denotes the computation domain. The reader
will note that this definition is not constructive, as op-
posed to the next one.

– Bonfante et al. [4,5] describe viruses as fixed points of
a semi-computable function. They first consider the fol-
lowing definition:

Definition 3 Assume that B is a computable function. A
virus with respect to B is a program v such that for each
p and x in the computation domain D,

ϕv(p, x) = ϕB(v,p)(x).

The function B is called the propagation function of the
virus v.

Then, the authors proved the following result:

Theorem 1 Given a semi-computable function f , there
is a virus v such that for any p and x in D, we have

ϕv(p, x) = f (v, p, x).

Recursion Theorem provides a fixed point v of the semi-
computable function f . This fixed point v is a virus with
respect to a propagation function B(v, p).
One of the most interesting characteristics of this ap-
proach is that such definitions and results are of con-
structive nature (in particular the reader will consider [4,
section 4.6, Theorem 4]).
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2.2 Complexity theoretic problems

Studying complexity aspects of viral sets is of high impor-
tance since it quantifies the intractability of detection. Very
few papers have been focused on the intractability of detec-
tion even if some major results have been established. Fred
Cohen [1] proved that the general problem of viral detection
was undecidable. This result refers to computability as pre-
sented by Rogers [6]. Most of the results on viruses concern
undecidability and the hierarchies on the top of the Halting
problem.

Later on, his Ph.D. tutor Adleman [2] gave complexity
results on some particular instances of the general detection
problem:

– The set V = {i |�i is a virus} is �2-complete [2, p 363].
– The infected set of a virus v defined as Iv = {i ∈ N|(∃ j ∈

N[i = v( j)]} is �1-complete [2, p. 371].

D. Spinellis proved in 2003 that detection of bounded-
length polymorphic viruses is a N P-complete problem
[7]. When considering polymorphic viruses of (possibly)
unbounded length, how does the detection complexity
change? Such a question may appear only of theoretical inter-
est, but in fact k-ary viruses (see section 2.3) can simulate this
behavior. More recently, a few additional results have been
published:

– In 2004, Zuo and Zhou [3] have exhibited viral sets that
are �1-complete, �2-complete or �3-complete. More-
over, they also considered other viral sets that appear to
be of even higher complexity.

– In 2005, Bonfante et al. [4] gave other similar results.

All these results refer to algorithmic complexity as consid-
ered in [8]. In this context, research is focused on classes of
low complexity where either time or space are bounded.

Despite the fact that most of these theoretical results prove
that the related detection problems are intractable, in practice
it remains essential to identify classes of viral codes that
effectively challenge protection policies. An interesting prob-
lem is to determine whether there exist viral sets of �n or �n
complexity (complete or not) for any given value of n. From
an intuitive point of view, the answer seems to be positive.
Some new examples of viral codes suggests it. To carry mat-
ters to extremes, one could in fact consider indecidability as
the infinite complexity (n → ∞).

The answer to the previous problem in fact appeals to
another problem: is it possible to classify viral codes accord-
ing to the complexity class of their viral sets? Up to now, viral
classification has been established by considering mathemat-
ical tools (Turing Machine [1], recursive functions [2,3], or
fixed points of a semi-computable function [4,9]; see sec-
tion 2.1). Classifications based on complexity, rather than on
mathematical properties, could produce a better perception
of the viral risk and hence new models for antiviral research.
The classification according to detection complexity should
help to better identify classes of viruses for which detection is
of polynomial complexity. This approach was first suggested
in [4, Theorem 14].

Recently Zuo and Zhou [10] presented new results on
time complexity of computer viruses (virus running time,
virus detection procedure). The authors pointed out some
interesting open problems related to the time complexity is-
sue. Their main results are:

– For any type of computer viruses, there exists a computer
virus v whose infecting procedure has arbitrarily large
time complexity.

– For any type of computer viruses, there is a virus v such
that any implementation of v can have arbitrarily large
time complexity in its infection procedure.

It is a well-known result [11] that there exists a computer
virus v such that its infected programs set Iv is undecid-
able. This can formally be expressed by the fact that Iv is a
non recursively enumerable set. Thus detecting all the pro-
grams infected by v requires to find a recursive set C such
that Iv ⊂ C.

Considering the fact that existing computer viruses are
almost always decidable, the authors of [10] then considered
two unsolved questions:

1. If Iv is decidable, what is its time complexity?
2. If Iv is undecidable, what is the time complexity of the

recursive set containing Iv?

They gave only a partial answer to the first question. They
proved that for any undecidable computer virus, there is one
detecting procedure of arbitrarily large complexity. As the
authors noted in their article, in practice it is more desirable
to consider the existence of a recursive set C such that Iv ⊆ C
and whose characteristic function has a “low-time” complex-
ity (polynomial). While this is trivial when C = N, it is still
an open problem to solve under the conditions that (N − C)
is infinite and C is as small as possible.

2.3 Viral and antiviral models problems

Some recent viruses–found in the wild or studied as part
of a prospective protection strategy–exhibit new structures,
properties and/or behaviors. Most of the time, these viruses
pose new threats that current antiviral models cannot deal
with. The reason is that these new viruses develop a com-
plex, sophisticated algorithmic that does not fit to the pres-
ent viral models. A good example are the so called k-ary
viruses (sometimes denoted as combined viruses or viruses
with “rendez-vous”). These viruses combine their respective
actions according to different modes of operation. A known
example of a 2-ary virus is the combination of the W32.Qaz
virus with the W32.Funlove virus.

Despite the fact that their attack scheme was not very
sophisticated compared to what 2-ary viruses can theoreti-
cally do, this combination illustrates a new face of tomor-
row’s threats. In [9, pp. 135ff], a classification of this type of
viruses has been sketched. Some particular types are exhaus-
tively presented, from an algorithmic point of view, in [12].
However, a complete and exhaustive categorization of all
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types of k-ary viruses and of their modes of combined action
is still missing.

The difficulty of studying these particular viruses comes
from the fact that they do not comply with existing mod-
els of computer viruses. As of now, computer virus mod-
els rely on the concept of “univariate” recursive functions
f : N → N. Unfortunately, these functions do not take into
account, among many other aspects, the time indexing which
is an inherent characteristics of k-ary viruses due to some of
their modes of operation (their respective action may occur
with a different time reference or index). Multivariate vec-
tor recursive functions f : N

k → N
k could be considered

instead, in order to capture the concept of k-ary viruses. Three
questions arise:

– Is a model based on multivariate vector recursive func-
tions the best possible one for k-ary viruses? Considering
the family of functions ( fi )1≤i≤k with fi : N → N could
produce a more general and more efficient model, being
a third-order logic model.

– Will these models help to identify previously unforeseen
classes of viruses?

– What kind of corresponding antiviral models do we have
to develop and what are the new complexity issues with
respect to them?

The next point deals with the classification of viral models
themselves and their respective relationship. Existing mod-
els (Cohen’s model based on Turing machines, Adleman’s
model based on recursive functions, and Bonfante et al.’s
model based on solutions of a fixed point equation) are all sec-
ond-order logic models, and have been proven to be largely
equivalent. Antiviral models that have been built from them
are equivalent too, and therefore are not different in their
detection capabilities.

If we consider to create new viral models, let us call them
M1, M2, . . . , Mn , we can ask ourselves:

– Do we have a logical chain for all of them, that is to say
M1 ≺ M2 ≺ · · · Mn ? In this context, each new model
Mn+1 yields a generalization of the antiviral models that
have been derived from previous viral models.

– On the contrary, do we have a lattice structure for the viral
models ? In this case, there exists a finite number of pairs
of models that are not comparable. In other words, for
some pairs Mi , M j , neither Mi ≺ M j nor M j ≺ Mi .
In this context, we have the same organization for corre-
sponding antiviral models. This implies a totally differ-
ent, more challenging, management of viral detection.

2.4 Classification and identification problems

The identification of new viral classes that may represent
future threats is essential. This identification is quite always
reactive, since it relies on code analysis. Another approach
is to mathematically forecast new viral techniques or clas-
ses. As a representative example, Zuo and Zhou [3] have
proven that polymorphic viruses with infinite forms exist.

But until now, no such viruses have been created in the real
world, excluding the trivial polymorphic viruses, e.g., the
padding function [13]. It remains an open problem to deter-
mine whether this computability paradigm would produce
non-trivial polymorphic viruses when considering real pro-
grams. Does Zuo and Zhou’s class of specific polymorphic
viruses effectively represent a practical risk? This problem
may sound very provocative (in fact it would require us to
write a virus), but only the proof-by-experience can give a
definitive answer.

As far as polymorphic and metamorphic viruses are con-
cerned, the classification of the mutation process is also an
open problem. Detection is mostly based on heuristic tech-
niques and their efficiency is regularly defeated by new muta-
tion techniques. Let us recall that detection of bounded-length
polymorphic viruses is a NP-complete problem [7]. In or-
der to improve detection of poly/metamorphic viruses a new
approach has to be found. Formally, Zou and Zhuo [3,10]
have defined (following Adleman) polymorphic viruses as
follows:

Definition 4 (Polymorphic virus with two forms) The pair
(v, v′) of two different total recursive functions v and v′ is
called a polymorphic virus with two forms if for all x, (v, v′)
satisfies

φv(x)(d, p) =




D(d, p), if T (d, p),

φx (d, p[v′(S(p))]), if I (d, p),

φx (d, p), otherwise,

and

φv′(x)(d, p) =




D(d, p), if T (d, p),

φx (d, p[v(S(p))]), if I (d, p),

φx (d, p), otherwise.

Real-life polymorphic viruses are then described by the
two authors as a n-tuple (v1, v2, . . . , vn) of n different to-
tal recursive functions, under similar condition as in Defini-
tion 4. Metamorphic viruses are defined in much the same
way, except that two selection functions S(p) and S′(p),
which choose a program p to infect, are used instead of only
one for polymorphic viruses. With this formalism, only a
set-theoretic, computability approach is considered. In this
context, this approach clearly relates to Cohen’s formalism
(concept of Largest Viral Set with respect to a Turing ma-
chine). The main drawback with the set approach comes
from the fact that relationships between the evolved forms do
not appear very clearly. On the contrary, polymorphism (and
metamorphism) is generally and practically implemented as
an algorithm that iterates over the different mutated forms.
The function may be very complex (like cellular automata).
In other words, polymorphism and metamorphism should be
described by a functional approach rather as a viral set con-
taining the different evolved forms of a given virus.

By considering the recursion theorem and the approach
presented in [9, Chap. 1] and developed in [4,5], we can think
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of a virus as a fixed point of the equation

ϕe(p, x) = f (e, p, x).

Then the functional description of polymorphism enables to
see the i th evolution of a virus v as the result of total recursive
function f , iterated i times. In other words, we have now to
consider the equation

ϕe(p, x) = f i (e, p, x).

Such a modeling opens interesting and unresolved problems,
whose solution could provide a significant improvement in
polymorphism detection:

– Is it possible to find some mathematical properties for
the function f which could help to precisely character-
ize what polymorphism really is and to classify functions
realizing code polymorphism (see [Remark 17]bkm)? We
could imagine, as an example, some distance d between
f i−1(e, p, x) and f i (e, p, x) which could reveal inter-
esting invariant or probabilistically invariant properties.
A first idea suggests to describe things in terms of func-
tion orbit and to focus on orbit properties.

– From a practical point of view, each evolved form of a
virus can be described as a binary sequence vi , that is to
say as a codeword of length L where L is the size of each
evolved form. Without loss of generality, we can consider
code mutation to be size-invariant, since generalization
to code size variation is straightforward. Then, the set of
all mutated forms can be described as a code of length L
(see [14]). Then:

– What is the code cardinality? This relates to the num-
ber of possible evolved forms. Obviously, the code
cardinality is upper-bounded by 2L , but since any
codeword of length L does not systematically rep-
resent a viable form from an execution point of view,
the cardinality of the code is bound to be strictly less
that 2L .

– What is the code minimal distance? What is the aver-
age Hamming distance between two codewords
(evolved forms) of a virus?

– How mathematical tools of coding theory could be
used and applied to help in mutation process charac-
terization and detection?

– Considering the last point of the preceding item, we could
for example use tools taken from signal processing (when
considering a virus as a binary sequence or an octal se-
quence): the discrete cross-correlation function to mea-
sure similarity (at least from a probabilistic point of view)
between to evolved forms. Knowing a given viral form,
cross-correlation would probably help to find evolving
features in an unknown (probably evolved) viral sequence.
Autocorrelation function [9, Chap. 8, Exercises] is a note-
worthy tool which can help detect some similarities in-
side a code and thus reveal some repetitive (dummy) code
insertion for polymorphic purposes. Many discrete trans-
forms commonly used in signal processing and coding

theory should be considered as well to study and reveal
mathematical properties of the iterated function describ-
ing a mutation process.

Another interesting problem deals with the impact of
quantum computing [15] on computer virology. With quan-
tum computing many research fields have made essential
progress. The best example is probably cryptography where
problems of intractable complexity (for traditional comput-
ers) can be solved very easily by means of a quantum com-
puter [16,17] The problem is twofold:

– Considering intractable viral detection problems, what
would be the impact of quantum computing? Is it possible
to imagine quantum viral detection algorithms (quantum
antivirus)?

– Considering quantum computers, what would then be a
quantum computer virus? Consequently, what would be
the effect of such a virus in terms of detection capabilities,
when processed by a quantum antivirus?

3 Open problems in virus propagation modeling
techniques

3.1 Need and requirements for propagation models

Creating reliable models of virus and worm propagation is
beneficial for many reasons. First, it allows researchers to bet-
ter understand the threat posed by new attack vector and new
propagation techniques. For instance, the use of conceptual
models of worm propagation allowed researchers to predict
the behavior of future malware, and later to verify that their
predictions were substantially correct [18].

In second place, using such models, researchers can de-
velop and test new and improved models for containment and
disinfection of viruses without resorting to risky “in vitro”
experimentation of zoo virus release and cleanup on testbed
networks [19].

Finally, if these models are combined with good load
modeling techniques such as the queueing networks, we can
use them to predict failures of the global network infrastruc-
ture when exposed to worm attacks. Moreover, we can indi-
viduate and describe characteristic symptoms of worm activ-
ity, and use them as an early detection mechanism.

In order to be useful, however, such a model must ex-
hibit some well-known characteristics: it must be accurate in
its predictions and it must be as general as possible, while
remaining as simple and as low-cost as possible. The impor-
tance of this work, and the shortcomings of many existing
models, are described in [20].

3.2 Open questions in modeling traditional viruses

Viral code propagation vectors have evolved over the years,
and propagation models also have evolved to keep pace. In
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the beginning of the virus era, viruses infected host pro-
grams, and the most common vector of propagation was
the exchange of files via magnetic supports. The same con-
cept, in more recent times, has been extended to macro lan-
guages embedded in office automation suites, generating the
so-called “macro viruses”.

The first complete application of mathematical models to
computer virus propagation appeared in [21]. The basic intu-
itions of this work still provide the fundamental assumptions
of most computer epidemiological models. Epidemiological
models abstract from the individuals, and consider them units
of a population. Each unit can only belong to a limited number
of states (Table 1 reports a widely accepted nomenclature):
usually, the name of a model explicits the chain , e.g., a model
where the susceptible population becomes infected, and then
recovers, is called a SIR model.

Another typical simplification consists in avoiding a de-
tailed analysis of virus transmission mechanics, translating
them into a probability that an individual will infect another
individual (with some parameters). In a similar way, tran-
sitions between other states of the model are described by
simple probabilities. Such probabilities could be calculated
directly by the details of the infection mechanism or, more
likely, they can be inferred by fitting the model to actual
propagation data. An excellent analysis of mathematics for
infectious diseases in the biological world is available in [22].

Most epidemiological models, however, share two impor-
tant shortcomings: they are homogeneous, i.e., an infected
individual is equally likely to infect any other individual; and
they are symmetric, which means that there is no privileged
direction of transmission of the virus. The former makes these
models inappropriate for illnesses that require a non-casual
contact for transmission; the latter constitutes a problem, for
instance, in the case of sexually-transmitted diseases.

In the case of computer viruses both problems are often
present. Most individuals exchange programs and documents
(by means of e-mails or diskettes) in almost closed groups,
and thus an homogeneous model may not be appropriate.
Furthermore, there are also “sources” of information and pro-
grams (e.g., computer dealers and software distributors) and
“sinks” (final users): that makes asymmetry a key factor of
data exchange.

In [21] Both of these shortcomings are addressed by trans-
ferring a traditional SIS model onto a directed random graph,
and the important effects of the topology of the graph on
propagation speed are analyzed. The authors describe the
behavior of virus infections on sparse and local graphs. In a
sparse graph, each node has a small, constant average degree;
on the contrary, in a local graph, the probability of having a

Table 1 Typical states for an epidemiological model

M Passive immunity
S Susceptible state
E Exposed to infection
I Infective
R Recovered

vertex between nodes B and C is significantly higher if both
have a vertex connected to the same node A. The authors
discuss that in the landscape of the beginnings of the 1990s
the latter situation approximated very well the interaction
between computer users. Among other results, it is shown
that the more sparse a graph is, the slower is the spread of an
infection on it; and higher the probability that an epidemic
condition does not occur at all, which means that sparseness
helps in containing global virus spread (while local spread is
unhindered). Further elaborations on this type of model can
be found in [23].

These findings are useful and interesting. However, it
must be noted that often a SIR model, in which a “cured”
system is not susceptible any more, could approximate bet-
ter the behavior of many real cases of propagation when a
patch or antivirus signature is available. Also, the introduc-
tion of the Internet as a convenient and immediate way for
software and data exchange has arguably made the assump-
tions of locality and sparseness of the graph no longer valid.

3.3 Open questions in modeling mass-mailers

With the widespread adoption of the Internet, mass-mail-
ing worms began to appear. The damage caused by Melissa
virus in 1999, Love Letter in 2000 and Sircam in 2001 dem-
onstrated that tricking users into executing the worm code
attached to an e-mail, or exploiting a vulnerability in a com-
mon e-mail client to automatically launch it, is a successful
way to propagate viral code.

In a technical report Zou et al. [24] describe a model of
e-mail worm propagation. The authors model the Internet
e-mail service as an undirected graph of relationships be-
tween people. In order to build a simulation of this graph,
they assume that each node degree is distributed on a power-
law probability function, an assumption drawn by the analysis
of distribution of discussion group sizes, which result to be
heavy-tailed: since adding a group to the address book adds
an edge towards all components of the group, the distribution
of node degree results being heavy tailed too. Nowadays, dis-
cussion groups proactively filter attachments, so this assump-
tion is challenged. Additionally, the authors employ a “small
world” network topology, which seems to ignore completely
the existence of interest groups and organizations, which nat-
urally create clusters of densely connected vertexes. All these
simplifications should be addressed in creating a good model
of mass-mailer propagation.

Furthermore, the authors assume that each user “opens”
an incoming virus attachment with a fixed probability, differ-
ent for each user but constant in time. This does not describe
very well the typical behavior of users. Indeed, most experi-
enced users avoid virus attachments altogether, while unex-
perienced users open them easily, at least the first time.

Additionally, it is observed that since user e-mail check-
ing time is much larger than the average e-mail transmission
time, the latter can be disregarded in the model. Since the
overall spread rate of viruses gets higher as the variability
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of users’ e-mail checking times increases, reliable statistics
describing this process should be used in order to build better
models of mass-mailer propagation.

Finally, when trying to determine the volume of messages
generated by a mass mailer the fact that, in most cases, e-mail
viruses install themselves as startup services on the system,
and spread themselves at each opportunity, should be taken
into account and properly modeled.

3.4 Open questions in modeling scanning worms

The concept of a self-contained, self-propagating program
which does not require an host program to be carried around,
was also developed early, but was somehow neglected for a
long time. In 1988, however, the Internet Worm [25] changed
the landscape of the threats. The Internet Worm was the first
successful example of a self-propagating program which did
not infect host files, but was self-contained. Moreover, it was
the first really successful example of an active network worm,
which propagated on the Internet by using well-known vul-
nerabilities of the UNIX operating system. Other worms used
open network shares, or exploited vulnerabilities in operating
systems and server software to propagate.

The random constant spread (RCS) model was developed
by Staniford, Paxson and Weaver [18] using empirical data
derived from the outbreak of the Code Red worm, a typical
random scanning worm which propagates by using the .ida
vulnerability discovered by eEye itself on June 18th 2001
[26], thus infecting vulnerable web servers running Micro-
soft IIS version 4.0 and 5.0. When Code Red infects an host,
it spreads by launching 99 threads, which randomly generate
IP addresses (excluding subnets 127.0.0.0/8, loopback, and
224.0.0.0/8, multicast) and try to compromise the hosts at
those addresses using the same vulnerability.

A particularity of this worm is that it does not reside on
the file system of the target machine, but it is carried over
the network as the shellcode of the buffer overflow attack
[27] it uses. When it infects an host, it resides only in mem-
ory: thus a simple reboot eliminates the worm, but does not
avoid reinfection. Applying a patch to fix the IIS server or
using temporary workarounds (e.g., activating a firewall, or
shutting down the web server) makes instead the machine
completely invulnerable to the infection. Thus, in order to
model completely the worm we would need a SIR model
where from I state we can either go to S or R state.

However, the RCS model makes a big approximation:
it ignores that systems can be patched, powered and shut
down, deployed or disconnected. In other words it is a sim-
ple SI model, with no recovery or immunization processes.
This is only partially reasonable and justified by the speed of
the worm propagation: in other words, the authors implicitly
assume that the worm will peak before a remedy begins to
be deployed.

An additional, more crucial approximation, is that the In-
ternet topology is considered an undirected complete graph.
In truth, the Internet being (as S. Breidbart defined it) “the

largest equivalence class in the reflexive, transitive, symmet-
ric closure of the relationship can be reached by an IP packet
from”, it is all but completely connected. In fact, recent re-
searches [28] show that as much as the 5% of the routed (and
used) address space is not reachable by various portions of
the network, due to misconfiguration, aggressive filtering, or
even commercial disputes between carriers.

Let N be the total number of vulnerable servers which
can be potentially compromised from the Internet. Let K be
the average compromise rate, i.e., the number of vulnerable
hosts that an infected host can compromise on average per
unit of time at the beginning of the outbreak. K averages out
any difference in processor speed, network bandwidth and
location of the infected host. The model also assumes that a
machine cannot be compromised multiple times and that, 232

being a very large address space, the chance that two different
instances of the worm simultaneously trying to infect a sin-
gle target is negligible. If a(t) is the proportion of vulnerable
machines which have been compromised at the instant t , the
RCS model is described by the simple differential equation:

da

dt
= K a(1 − a). (4)

The solution of this equation is the well-known logistic
curve. In [18] the authors fit their model to the “scan rate”,
or the total number of scans seen at a single site, instead than
using the number of distinct attacker IP addresses, because
this latter variable is distorted by time skew, unless the out-
break is observed from a very large address space, a concept
known as a “network telescope” [29]. Researchers from CA-
IDA used data from such a telescope to describe the Code Red
outbreak [30]. A total of about 359.000 hosts were infected
by CRv2 in about 14 h of activity. The worm was peaking
when the self-deactivation mechanism it contained shut it
down.

However, when we deal with UDP-based worms such
as Slammer (which propagates by exploiting a buffer over-
flow vulnerability in Microsoft SQL Server) a radical change
happens. Slammer had a doubling time of 8.5(±1) s, while
Code Red had a doubling time of about 37 min. Slammer
infected more than 90% of vulnerable hosts within the first
10 min. This is caused by the fact that TCP based worms
have to establish a connection before actually exploiting the
vulnerability: having to wait for answers, they are latency
limited. UDP based worm, on the contrary, scans at the full
speed allowed by the network bandwidth available, so they
are bandwidth limited.

Slammer’s spreading strategy is based on random scan-
ning, similarly to Code Red. Thus, the RCS model should
fit its growth, but it fails after a while. A common expla-
nation for this failure is that the model does not take into
due account bandwidth limitations on the global network: in
other words, the failure and overload of links during worm
propagation make the “global reachability” assumption less
and less realistic as time goes on.

In [31] The RCS model was extended, creating a com-
partment-based model, in order to take into account the exis-
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tence of bottleneck Internet links. The propagation equation
became thus a system of non-linear differential equations:
dai

dt
=


ai K

Ni

N
+ Qi

∑
j =i

Q j
N j

N
a j K


 (1 − ai ), (5)

where we denote with Ni the number of susceptible hosts in
the i th compartment (ASi ), with ai the proportion of infected
hosts in the same compartment. We also suppose, for simplic-
ity, that the average propagation speed K is constant in each
compartment. Qi , 0 < Qi ≤ 1 is the fraction of attack pack-
ets that actually can get through the link of the i-th compart-
ment, and is a rough approximation of the bottleneck effect
of the Internet links. Numerical simulations of the equation
and its effects on the global growth of the worm and on the
observation of the growth from a telescope are also presented.

This model is derived for a set of compartments with a
single connection to the rest of the world, which is only par-
tially realistic. A model for multi-homed compartments that
are not just leaves, but that forward traffic following realistic
Internet policies would be desirable.

Zou et al. [32] propose a different approach for modeling
slow worms such as Code Red incorporating the Kermack-
Mckendrick model for host disinfection into the RCS equa-
tions. Additionally, the authors propose that the infection rate
K should be considered a function of time, because of inter-
vening network saturation and router collapse. Basically they
rewrite the model as:

da

dt
= K (t) a (1 − a − q − r) − dr

dt
, (6)

where q(t) is the proportion of susceptible hosts that are
immunized at time t , and r(t) is the proportion of infected
hosts that are cured and immunized at time t . This model is
thus called the two-factor worm model. In order to complete
the model, the authors make some debatable assumptions on
q(t) and r(t). In particular (similarly to the kill signal the-
ory described in [33]), the patching process is modeled as a
“counter-worm”:

dq

dt
= µ(1 − a − q − r)(a + r). (7)

This equation is somehow arbitrary, and further analysis on
the two-factor model is needed before it can be considered a
sound model of viral propagation.

3.5 Other open questions in propagation modeling

Some authors [34] have explored discrete time models, in the
hope to capture better the discrete time behavior of a worm.
However, a continuous model is appropriate for such large
scale models, and the epidemiological literature is clear in
this direction. The benefits of using a discrete time model
seem very limited, but this is difficult to say since the base
assumptions of this particular model are not completely cor-
rect. More exploration of the usage of discrete time models
could lead to interesting results.

It is important to note that modern viruses often use a
mix of different techniques to spread (for instance, Sircam
uses both mass mailing and open network shares, while Nim-
da uses four different mechanisms to propagate). We are not
aware, however, of any existing model which takes into ac-
count multi-vector viruses and worms.

4 Open problems in antiviral countermeasures

4.1 Monitoring and early warning

In current infrastructure where worms are able to achieve
quick penetration it is essential to research and develop meth-
ods for prevention that will prevent attacks as early as pos-
sible. For example, Ibrahim and al. [35] demonstrate this
approach by proactive email worm prevention.

Because of the effects of distortion described in section
3.4, in [36] the models of active worm propagation are used
to build an early monitoring and alerting system for TCP or
UDP based worms, based on distributed ingress and egress
sensors for worm activity. A data collection engine based on
a Kalman filter is used to create an alerting system, capable
of reliably setting off alarms as early as when the proportion
of infected system is 1% ≤ a ≤ 2%. It is also shown that this
early warning method works well also with fast spreading
worms, and even if an hit-list start-up strategy is used.

However, we need more research in areas of proactive pre-
vention. In general interesting areas could be network foren-
sics, detecting infected host systems and preventing mali-
cious operations from infected hosts.

4.2 Virus resistant infrastructures

If we develop further the concept of proactive prevention we
may end up in research that will promote prevention as an
inherent part of infrastructure design. We may find exam-
ples of such attempts from the development of IPv6 (Internet
Protocol version 6), processor architecture design and buffer
overflow [37] prevention techniques. However, we still need
more holistic approaches. For example, security can be an
inherent part of computer architecture and network architec-
ture design [38]. Interesting questions may arise from con-
struction of virus resistant and self-defending architectures.

4.3 Integrity verification

Viruses are a violation against system integrity. Unfortu-
nately, in current systems integrity is difficult to verify and
operating environments seldom support systematic integrity
verification. There are solutions for system integrity verifica-
tion, but integrity verification is not typically adapted as an
inherent part of system design.

Radai established a theory of integrity verification re-
lated to computer virology [39,40]. Furthermore, Bontchev
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presented some methods viruses can use to attack integrity
checking programs and how the attacks could be prevented
[41]. More recently, Filiol [9, Chap. 8] technically demon-
strated how integrity checking can be bypassed. One inter-
esting question could be: how to adapt integrity verification
as securely as possible against malware attacks? For exam-
ple, new information system architectures may be needed to
support integrity verification.

4.4 Effects of quarantine

Quarantine is the world’s oldest defense against viruses. In
[42] a dynamic preventive quarantine system is proposed,
which places suspiciously behaving hosts under quarantine
for a fixed interval of time. Models and simulation of a quar-
antine system are proposed, however such a system would
be difficult to deploy. Since hosts cannot be trusted to auto-
quarantine themselves, on most networks quarantine would
act on remotely manageable enforcement points (i.e., fire-
walls and intelligent network switches). Since these compo-
nents are limited, entire blocks of network would need to
be isolated at once, increasing the probability that innocent
hosts will be denied service as a side effect of the quarantine
system.

In addition, as shown in [31], virus spread is not stopped
but only slowed down inside each quarantined block. More-
over, it should be considered that the “kill signal” effect (i.e.,
the distribution of anti-virus signatures and patches) would
be hampered by aggressive quarantine policies (something
which is not taken into account in the modified Kerman-
McKendrick models presented in [42]).

In [43] various containment strategies (content filtering
and blacklisting) are simulated, deriving lower and upper
bounds of efficacy. Albeit interesting, the results on black-
listing share the same weakness pointed out before: it’s not
realistic to think about a global blacklisting engine, enforced
at network level.

More research on practical quarantining systems are
needed in order to bring these approaches into real-world
use. On a LAN, an intelligent network switch could be used to
selectively shut down the ports of infected hosts, or to cut off
an entire sensitive segment. Network firewalls and perimeter
routers can be used to shut down the affected services. Reac-
tive IDSs (the so-called “intrusion prevention systems”) can
be used to selectively kill worm connections based on attack
signatures. Automatic reaction policies, however, are intrin-
sically dangerous. False positives and the possibility of fool-
ing a prevention system into activating a denial-of-service
are dangerous enough to make most network administrators
wary.

4.5 Immunization

In [33] the effect of selective immunization of computers on
a network is discussed. The dynamics of infection and the

choice of immunization targets are examined for two net-
work topologies: a hierarchical, tree-like topology (which
is obviously not realistic for modeling the Internet), and a
cluster topology. The results are interesting, but the exact
meaning of “node immunization” is not defined. While such
a study could be used to prioritize the process of patching on
a widespread network, unless some new ideas for virus pre-
vention are proposed, the practical possibilities of application
for such a model seem extremely limited.

4.6 Honeypots and tarpits

Honeypots are fake computer system and networks, used as
a decoy to cheat intruders. They are installed on dedicated
machines, and left as a bait so that aggressors will lose time
attacking them and trigger an alert. Since honeypots are not
used for any production purpose, any request directed to the
honeypot is at least suspect. Honeypots can be made up of
real sacrificial systems, or of simulated hosts and services
(created using Honeyd by Niels Provos, for example).

A honeypot could be used to detect the aggressive pattern
of a worm through anomaly detection: since honeypots are
empty of true users, any non-simulated traffic hitting them
is suspicious. Repeated connections towards the same ports
of the honeypot machines are a good indicator of a scanning
worm at work. The honeypot can thus be used as an alerting
system. Also, once a worm has entered a honeypot, its pay-
load and replication behaviors can be easily studied, provided
that an honeywall is used to quarantine the sacrificial hosts
making them unable to actually attack the real hosts outside.

As an additional possibility, an honeypot can be used
to slow down worm propagation, particularly in the case of
TCP-based worms. By delaying the answers to the worm
connections, a honeypot may be able to slow down its prop-
agation; very much the same technique used in the LaBrea
“tarpit” tool, which replies to any connection incoming on an
unused IP address of a network, and simulates a TCP session
with the possible aggressor. LaBrea slows down the connec-
tion: when data transfer begins, the TCP window size is set
to zero, so that no data can be transferred. The connection is
kept open, and any request to close the connection is ignored.
This means that the worm will have to wait for a timeout in
order to disconnect, since it uses the standard TCP stack of the
host machine which follows RFC standards. A worm won’t
be able to detect this slowdown, and if enough fake targets are
present, its growth will be slowed down. Obviously, a multi-
threaded worm will be less affected by this technique. This
effect should be properly studied and modeled to evaluate its
effectiveness.

4.7 Counterattacks and good worms

Counterattack may seem a viable cure to worms. When host
A sees an incoming worm attack from host B, it knows that
host B must be vulnerable to the particular exploit that the
worm uses to propagate (unless the worm itself removed that
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vulnerability as a result of infection). By using the same type
of exploit, host A can automatically take control of host B
and try to cure it from infection and patch it.

The first important thing to note is that, fascinating as the
concept may seem, this is not legal, unless host B is under
the control of the same administrator of host A. Addition-
ally, automatically patching a remote host is always a dan-
gerous thing, which can cause considerable unintended dam-
age (e.g., breaking services and applications that rely on the
patched component).

Another solution which in past proved to be worse than
the illness is the release of a so-called “good” or “healing”
worm, which automatically propagates in the same way the
bad worm does, but carries a payload which patches the vul-
nerability. A good example of just how dangerous such things
may be is the Welchia worm, which was meant to be a cure
for Blaster, but actually caused devastating harm to the net-
works. Such proposals must be carefully evaluated, as was
done in [44].

5 Technical and practical research areas
in computer virology

5.1 Anti-virus software evaluation

It is very difficult to accurately evaluate the quality and the
limitations inherent to the different antiviral products avail-
able today. Users can only compare marketing claims of
each vendor, without any real information about the detection
and disinfection power and efficiency. Notoriety, or market
share, could be taken as an indicator. The raw percentage of
viruses/malware that are effectively detected and efficiently
disinfected can also be considered. But a little experience in
antiviral software quickly shows that this approach is quite
sterile.

The problem of having precise and efficient technical
evaluation tools, and a clear methodology to use them, is of
the highest importance. This problem must be considered in
connection with a crucial property expressing the complex-
ity virus writers must face to obtain technical information
about the antivirus during a “black box analysis” process.
The analysis of viral databases is probably the best example.

5.2 Malware taxonomy and phylogeny

As we have seen multiple times, recursive self-replication
is the fundamental characteristic of a virus. However, when
we go beyond that it becomes difficult to classify malware.
Even a definition for the term “computer worm” has not been
agreed on. For example, if we define that a virus must infect
a host and a worm is self-contained, the meaning of “host”
must be discussed. When we reach terms like “Trojan horse”
and “spyware” the precise definitions is even more difficult.
At least, the following reasons can be found:

1. Malicious intentions are difficult (and sometimes impos-
sible) to predict by analyzing program code.

2. A program may be used maliciously even when it is de-
signed for beneficial purposes, and vice-versa.

3. There exist a number of “gray areas” where it is impossi-
ble to say whether a program belongs to a certain category
or not.

Despite the difficulties in defining malware, research on
objective definitions and criteria for classification is needed.
Brunnstein proposes an interesting classification scheme
based on software disfunctions [45]. However, we also need
practical definitions. In general interesting questions could
be: what are different malware categories and sub-catego-
ries? What are the functionalities for a certain program cate-
gory? What are the precise definitions? How to prove that a
program code belongs to a certain category?

Even the naming convention of malware is still an open
problem, perhaps one of the most crucial problems in modern
computer virology. Unfortunately nobody proved that this is
not an “undecidable problem”. It is a matter of fact, however,
that every antivirus company develops its own naming con-
vention, ignoring the other ones. Very frequently, all these
naming conventions appear to be at least partially incom-
patible, but unless a sound and rational classification base
is developed, nobody will accept to give up. Recent devel-
opments [46,47] have shown that phylogeny models – i.e.,
taking into account the fact that programs may be evolved
through code rearrangements or that viruses are rarely writ-
ten from scratch and are mostly derived from known previous
codes – is likely to produce the desired tools for a unified nam-
ing convention. But many problems still exist. The authors
of [47] focused on permutations of code. They have identi-
fied some questions that are still to be solved. Moreover, they
only consider sequence-based phylogeny models. Would it
be possible to extend their approach to function-based phy-
logeny?

5.3 Malware in smart phones

Even a modest cellular phone includes software that controls
the phones operations. Meanwhile phones are getting more
and more properties of computers: connectivity, applications
and calculation power. Although in Symbian smart phone
operating system security is part of the design vulnerabilities
may still remain. Jarmo [48] presents technical aspects of
Symbian from the malware point of view and Reynaud-Plan-
tey [49] recently analyzed some new aspects of the viral risk
with respect to the Java language. MMS (Multimedia Mes-
saging System), Bluetooth and vulnerabilities enable exis-
tence of viruses.

Research in computer virology is so far occasional in the
area of smart phones. Still smart phones bring special aspects
to research: mobility, cost of services and fixed wireless con-
nections.
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6 Conclusions

We have proposed some of the most interesting open research
problems and areas in computer virology, with an emphasis
on theoretical aspects. To begin, we focused on theoretical
computer virology, presenting the core results already devel-
oped in literature, and the problems that are still waiting a
solution. In particular, complexity problems, virus classifi-
cation and new classes of viruses still need much research.

Virus propagation modeling techniques als need improve-
ment in order to capture new trends in the propagation of com-
mon viruses, mass-mailers and random scanning worms. Pro-
posed countermeasures are also described, along with open
questions: how can they be validated before being imple-
mented? Which new defensive techniques do we need against
the next generations of aggressive malware?

Finally, we presented practical and technical research ar-
eas, to complete our review of open research issues: we fo-
cused on those problems that, in our view, could benefit from
a more theoretically sound approach.

Of course, we have not addressed all open problems. For
instance, there are interesting issues concerning program-
ming languages, their semantics and computer viruses. We
could wonder whether it is possible to develop a high-level
programming language compiler which guarantees that no
attacks can be performed. This type of questions is gener-
ally addressed in computer safety research, but will likely be
deeply interesting in defeating computer malware.

In conclusion, since the research domain in computer
virology is a new one, we can expect fundamental research
outcomes to be found in the next few years, and to deeply
influence the future of computer security technologies for
virus defense.
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